R/helpers.R
effectsArray2list.Rd
Converts an array of posterior samples of multi-trait marker effects to a named list (one for each trait).
effectsArray2list(effectsArray, snpIDs, traits, nIter, burnIn, thin)
According to BGLR documentation: 3D array, with dim=c(nRow,p,traits), where nRow number of MCMC samples saved, p is the number of predictors and traits is the number of traits. Multitrait
writes a binary file to disk when saveEffects=TRUE is specified. It can be read to R with readBinMatMultitrait
.
character vector with labels for the predictors (SNPs), numeric should work too, but untested.
character vector to label the traits.
number of iterations used for MCMC; used internally only to exclude burn-in samples from computation
burnIn for MCMC; used internally only to exclude burn-in samples from computation
thin for MCMC; used internally only to exclude burn-in samples from computation
list of matrices, one matrix per trait, each matrix has nrow((nIter-burnIn)/thin)
and ncol(length(snpIDs))
. Each element of the list is named with a string identifying the trait and the colnames of each matrix are labelled with snpIDs.
Other helper:
backsolveSNPeff()
,
centerDosage()
,
crosses2predict()
,
dose2domDevGenotypic()
,
dose2domDev()
,
genmap2recombfreq()
,
genoVarCovarMatFunc()
,
getAF()
,
getMAF()
,
getPropHom()
,
intensity()
,
kinship()
,
maf_filter()
,
quadform()
,
remove_invariant()
Other helper:
backsolveSNPeff()
,
centerDosage()
,
crosses2predict()
,
dose2domDevGenotypic()
,
dose2domDev()
,
genmap2recombfreq()
,
genoVarCovarMatFunc()
,
getAF()
,
getMAF()
,
getPropHom()
,
intensity()
,
kinship()
,
maf_filter()
,
quadform()
,
remove_invariant()