Last updated: 2020-12-04

Checks: 7 0

Knit directory: IITA_2020GS/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200915) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 79b6430. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    data/.DS_Store
    Ignored:    output/.DS_Store

Untracked files:
    Untracked:  data/GEBV_IITA_OutliersRemovedTRUE_73119.csv
    Untracked:  data/PedigreeGeneticGainCycleTime_aafolabi_01122020.csv
    Untracked:  data/iita_blupsForCrossVal_outliersRemoved_73019.rds
    Untracked:  output/DosageMatrix_IITA_2020Sep16.rds
    Untracked:  output/IITA_CleanedTrialData_2020Dec03.rds
    Untracked:  output/IITA_ExptDesignsDetected_2020Dec03.rds
    Untracked:  output/Kinship_AA_IITA_2020Sep16.rds
    Untracked:  output/Kinship_AD_IITA_2020Sep16.rds
    Untracked:  output/Kinship_A_IITA_2020Sep16.rds
    Untracked:  output/Kinship_DD_IITA2020Sep16.rds
    Untracked:  output/Kinship_D_IITA_2020Sep16.rds
    Untracked:  output/cvresults_ModelADE_chunk1.rds
    Untracked:  output/cvresults_ModelADE_chunk2.rds
    Untracked:  output/cvresults_ModelADE_chunk3.rds
    Untracked:  output/genomicPredictions_ModelADE_threestage_IITA_2020Sep21.rds
    Untracked:  output/genomicPredictions_ModelADE_twostage_IITA_2020Dec03.rds
    Untracked:  output/genomicPredictions_ModelA_threestage_IITA_2020Sep21.rds
    Untracked:  output/iita_blupsForModelTraining_twostage_asreml_2020Dec03.rds
    Untracked:  output/model_meangetgvs_vs_year.csv
    Untracked:  output/model_rawgetgvs_vs_year.csv
    Untracked:  output/training_data_summary.csv
    Untracked:  workflowr_log.R

Unstaged changes:
    Modified:   output/IITA_ExptDesignsDetected.rds
    Modified:   output/iita_blupsForModelTraining.rds
    Modified:   output/maxNOHAV_byStudy.csv
    Modified:   output/meanGETGVbyYear_IITA_2020Dec03.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/07-cleanTPdata_Dec2020.Rmd) and HTML (docs/07-cleanTPdata_Dec2020.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 79b6430 wolfemd 2020-12-04 Update the analysis of rate-of-gain. Include regressions and output
html 7bae38d wolfemd 2020-12-03 Build site.
html b9bb6f8 wolfemd 2020-12-03 Build site.
Rmd 9718666 wolfemd 2020-12-03 Refresh BLUPs and GBLUPs with trials harvested so far. Include

Follow outlined GenomicPredictionChecklist and previous pipeline to process cassavabase data for ultimate genomic prediction.

Below we will clean and format training data.

  • Inputs: “Raw” field trial data
  • Expected outputs: “Cleaned” field trial data

Re-fresh data from Sept. ’20

This will update genomic predictions relative to the earlier analysis done in Sept. 2020.

Initial cassavabase download

[User input] Cassavabase download

Downloaded all IITA field trials with studyYear 2018, 2019, 2020.

  1. Cassavabase search wizard:
  2. Selected all IITA trials with studyYear 2018, 2019, 2020. Make a list. Named it IITA_Trials_2018to2020_2020Dec03.
  3. Go to Manage –> Download here. Download phenotypes (plot-basis only) and meta-data as CSV using the corresponding boxes / drop-downs.
  4. Store flatfiles, unaltered in directory DatabaseDownload_2020Dec03/ uploaded to Cassavabase FTP server.

2018 trials: probably redundant to those previously downloaded in July 2019 for the genomic prediction of GS C4. In case some trials weren’t harvested as of July 2019, use the 2018 trials downloaded here instead of the ones from 2019.

2019 trials: All trials harvested and uploaded as of now (Dec. 3rd, 2020) are to be added to refresh the genomic predictions.

2020 trials: If any current trials already have e.g. disease data, will use it.

[User input] Cassavabase download

Downloaded all IITA field trials.

  1. Cassavabase search wizard:
  2. Selected all IITA trials currently available. Make a list. Named it ALL_IITA_TRIALS_2020Sep15.
  3. Go to Manage –> Download here. Download phenotypes (plot-basis only) and meta-data as CSV using the corresponding boxes / drop-downs.
  4. Store flatfiles, unaltered in directory DatabaseDownload_2020Sep15/ uploaded to Cassavabase FTP server.

Join metadata files

Possible database bug? The entire >500Mb phenotype dataset for IITA downloaded without a problem. However, I’m getting an “server error” message trying to download the corresponding meta-data in one chunk.

Solution: combine meta-data downloaded for “all” trials in July 2019, with meta-data download for the 2018-2020 period done Dec 3rd, 2020. Feed joined file to readDBdata().

metadata19 <- read.csv("ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/DatabaseDownload_72419/2019-07-24T144144metadata_download.csv", 
    na.strings = c("#VALUE!", NA, ".", "", " ", "-", "\""), stringsAsFactors = F)
metadata20 <- read.csv("ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/DatabaseDownload_2020Dec03/2020-12-03T094057metadata_download.csv", 
    na.strings = c("#VALUE!", NA, ".", "", " ", "-", "\""), stringsAsFactors = F)
metadata19 %>% # remove lines for trials in the 2020 download
filter(!studyName %in% metadata20$studyName) %>% bind_rows(metadata20) %>% # ensure no duplicate lines
distinct %>% # write to disk
write.csv(., here::here("output", "all_iita_metadata_Dec2020.csv"), row.names = F)

Read-in trial data

rm(list = ls())
library(tidyverse)
library(magrittr)
source(here::here("code", "gsFunctions.R"))

Read DB data directly from the Cassavabase FTP server.

## From September
dbdata_sep2020 <- readDBdata(phenotypeFile = paste0("ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/", 
    "DatabaseDownload_2020Sep15/2020-09-15T185453phenotype_download.csv"), metadataFile = here::here("output", 
    "all_iita_metadata.csv"))
## New, December download
dbdata_dec2020 <- readDBdata(phenotypeFile = paste0("ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/", 
    "DatabaseDownload_2020Dec03/2020-12-03T102130phenotype_download.csv"), metadataFile = here::here("output", 
    "all_iita_metadata_Dec2020.csv"))
# dbdata_dec2020 %>% filter(!is.na(plantingDate)) %>%
# count(studyName,studyYear,locationName) dbdata_dec2020 %>%
# select(studyYear,studyDbId) table(unique(dbdata_dec2020$studyName) %in%
# unique(dbdata_sep2020$studyName)) FALSE TRUE 42 371

# 42 'new trials' table(dbdata_dec2020$observationUnitDbId %in%
# dbdata_sep2020$observationUnitDbId) FALSE TRUE 5823 175964

# length(dbdata_dec2020$observationUnitDbId)==length(unique(dbdata_dec2020$observationUnitDbId))

# any of the 'new' plots register as being for trials already in the sep data?
# yes, 1 trial (see below)
# table(unique(dbdata_dec2020$studyName[!dbdata_dec2020$observationUnitDbId %in%
# dbdata_sep2020$observationUnitDbId]) %in% unique(dbdata_sep2020$studyName))
# FALSE TRUE 42 1

### probably doesn't matter, just replace the old with the new

dbdata <- bind_rows(dbdata_sep2020 %>% mutate(replicate = as.integer(replicate), 
    rowNumber = as.integer(rowNumber), colNumber = as.integer(colNumber)) %>% mutate(across(contains("CO_334"), 
    as.numeric)) %>% anti_join(dbdata_dec2020 %>% distinct(observationUnitDbId, studyName, 
    studyYear, studyDbId)), dbdata_dec2020)

Group and select trials to analyze

Make TrialType Variable

dbdata <- makeTrialTypeVar(dbdata)
dbdata %>% count(TrialType)
       TrialType      n
1            AYT  53226
2            CET  70458
3   Conservation    997
4  CrossingBlock   1546
5         ExpCET   1865
6    GeneticGain  51905
7           NCRP   3872
8            PYT  61254
9             SN 155596
10           UYT  74378
11          <NA>  77651

Trials NOT included

Looking at the studyName’s of trials getting NA for TrialType, which can’t be classified at present.

Here is the list of trials I am not including.

dbdata %>% filter(is.na(TrialType)) %$% unique(studyName) %>% write.csv(., file = here::here("output", 
    "iita_trials_NOT_identifiable_Dec2020.csv"), row.names = F)

Wrote to disk a CSV in the output/ sub-directory.

Should any of these trials have been included?

Especially the following new trials (post 2018)?

dbdata %>% filter(is.na(TrialType), as.numeric(studyYear) > 2018) %$% unique(studyName)
 [1] "18Hawaii_Parents"          "19CB1IB"                  
 [3] "19CVS12Chitala"            "19CVS12Mkondezi"          
 [5] "19flowexpPGR22UB"          "19flowexpRedLight22UB"    
 [7] "19flowLightIntensityUB"    "19flowPGRFeminizationIB"  
 [9] "19flowPGRFreqIB"           "19flowPGRRatioIB"         
[11] "19flowPGRRtflwrIB"         "19GhanaGermplasmUB"       
[13] "19GRCgermplasmUB"          "19.GS.C1.C2.C3.SelGain.AB"
[15] "19HarvTimeKabangwe"        "19LocalGermplasmUB"       
[17] "19SN5968Chitala"           "2019GXEBUKEMBA"           
[19] "2019GXEMUHANGA"            "2019GXENGOMA"             
[21] "2019GXENYAGATARE"          "2019GXERUBIRIZI"          
[23] "2019GXERUBONA"             "20CSV12Chitala"           
[25] "20CSV12Mkondezi"           "20GRCgermplasmIB"         
[27] "20LocalGermplasmIB"        "20PTY49Kabangwe"          
[29] "Hawaii_IITA_seed_2019"     "Hawaii_seed_Asia_2019"    
[31] "Hawaii_seed_CIAT_2019"    

Remove unclassified trials

dbdata %<>% filter(!is.na(TrialType))
dbdata %>% group_by(programName) %>% summarize(N = n())
# A tibble: 1 x 2
  programName      N
  <chr>        <int>
1 IITA        475097
# 475097 plots (~155K are seedling nurseries which will be excluded from most
# analyses)

Traits and TraitAbbreviations

Making a table of abbreviations for renaming. Since July 2019 version: added chromometer traits (L, a, b) and added branching levels count (BRLVLS) at IYR’s request.

traitabbrevs <- tribble(~TraitAbbrev, ~TraitName, "CMD1S", "cassava.mosaic.disease.severity.1.month.evaluation.CO_334.0000191", 
    "CMD3S", "cassava.mosaic.disease.severity.3.month.evaluation.CO_334.0000192", 
    "CMD6S", "cassava.mosaic.disease.severity.6.month.evaluation.CO_334.0000194", 
    "CMD9S", "cassava.mosaic.disease.severity.9.month.evaluation.CO_334.0000193", 
    "CGM", "Cassava.green.mite.severity.CO_334.0000033", "CGMS1", "cassava.green.mite.severity.first.evaluation.CO_334.0000189", 
    "CGMS2", "cassava.green.mite.severity.second.evaluation.CO_334.0000190", "DM", 
    "dry.matter.content.percentage.CO_334.0000092", "PLTHT", "plant.height.measurement.in.cm.CO_334.0000018", 
    "BRNHT1", "first.apical.branch.height.measurement.in.cm.CO_334.0000106", "BRLVLS", 
    "branching.level.counting.CO_334.0000079", "SHTWT", "fresh.shoot.weight.measurement.in.kg.per.plot.CO_334.0000016", 
    "RTWT", "fresh.storage.root.weight.per.plot.CO_334.0000012", "RTNO", "root.number.counting.CO_334.0000011", 
    "TCHART", "total.carotenoid.by.chart.1.8.CO_334.0000161", "LCHROMO", "L.chromometer.value.CO_334.0002065", 
    "ACHROMO", "a.chromometer.value.CO_334.0002066", "BCHROMO", "b.chromometer.value.CO_334.0002064", 
    "NOHAV", "plant.stands.harvested.counting.CO_334.0000010")
traitabbrevs %>% rmarkdown::paged_table()

Run function renameAndSelectCols() to rename columns and remove everything unecessary

dbdata <- renameAndSelectCols(traitabbrevs, indata = dbdata, customColsToKeep = "TrialType")

QC Trait values

Standard code, recycled… should be a function?

dbdata <- dbdata %>% mutate(CMD1S = ifelse(CMD1S < 1 | CMD1S > 5, NA, CMD1S), CMD3S = ifelse(CMD3S < 
    1 | CMD3S > 5, NA, CMD3S), CMD6S = ifelse(CMD6S < 1 | CMD1S > 5, NA, CMD6S), 
    CMD9S = ifelse(CMD9S < 1 | CMD1S > 5, NA, CMD9S), CGM = ifelse(CGM < 1 | CGM > 
        5, NA, CGM), CGMS1 = ifelse(CGMS1 < 1 | CGMS1 > 5, NA, CGMS1), CGMS2 = ifelse(CGMS2 < 
        1 | CGMS2 > 5, NA, CGMS2), DM = ifelse(DM > 100 | DM <= 0, NA, DM), RTWT = ifelse(RTWT == 
        0 | NOHAV == 0 | is.na(NOHAV), NA, RTWT), SHTWT = ifelse(SHTWT == 0 | NOHAV == 
        0 | is.na(NOHAV), NA, SHTWT), RTNO = ifelse(RTNO == 0 | NOHAV == 0 | is.na(NOHAV), 
        NA, RTNO), NOHAV = ifelse(NOHAV == 0, NA, NOHAV), NOHAV = ifelse(NOHAV > 
        42, NA, NOHAV), RTNO = ifelse(!RTNO %in% 1:10000, NA, RTNO))

Post-QC traits

Harvest index

dbdata <- dbdata %>% mutate(HI = RTWT/(RTWT + SHTWT))

Unit area traits

I anticipate this will not be necessary as it will be computed before or during data upload.

For calculating fresh root yield:

  1. PlotSpacing: Area in \(m^2\) per plant. plotWidth and plotLength metadata would hypothetically provide this info, but is missing for vast majority of trials. Therefore, use info from Fola.
  2. maxNOHAV: Instead of ExpectedNOHAV. Need to know the max number of plants in the area harvested. For some trials, only the inner (or “net”) plot is harvested, therefore the PlantsPerPlot meta-variable will not suffice. Besides, the PlantsPerPlot information is missing for the vast majority of trials. Instead, use observed max(NOHAV) for each trial. We use this plus the PlotSpacing to calc. the area over which the RTWT was measured. During analysis, variation in the actual number of plants harvested will be accounted for.
dbdata <- dbdata %>% mutate(PlotSpacing = ifelse(programName != "IITA", 1, ifelse(studyYear < 
    2013, 1, ifelse(TrialType %in% c("CET", "GeneticGain", "ExpCET"), 1, 0.8))))
maxNOHAV_byStudy <- dbdata %>% group_by(programName, locationName, studyYear, studyName, 
    studyDesign) %>% summarize(MaxNOHAV = max(NOHAV, na.rm = T)) %>% ungroup() %>% 
    mutate(MaxNOHAV = ifelse(MaxNOHAV == "-Inf", NA, MaxNOHAV))

write.csv(maxNOHAV_byStudy %>% arrange(studyYear), file = here::here("output", "maxNOHAV_byStudy.csv"), 
    row.names = F)
# I log transform yield traits to satisfy homoskedastic residuals assumption of
# linear mixed models
dbdata <- left_join(dbdata, maxNOHAV_byStudy) %>% mutate(RTWT = ifelse(NOHAV > MaxNOHAV, 
    NA, RTWT), SHTWT = ifelse(NOHAV > MaxNOHAV, NA, SHTWT), RTNO = ifelse(NOHAV > 
    MaxNOHAV, NA, RTNO), HI = ifelse(NOHAV > MaxNOHAV, NA, HI), FYLD = RTWT/(MaxNOHAV * 
    PlotSpacing) * 10, DYLD = FYLD * (DM/100), logFYLD = log(FYLD), logDYLD = log(DYLD), 
    logTOPYLD = log(SHTWT/(MaxNOHAV * PlotSpacing) * 10), logRTNO = log(RTNO), PropNOHAV = NOHAV/MaxNOHAV)
# remove non transformed / per-plot (instead of per area) traits
dbdata %<>% select(-RTWT, -SHTWT, -RTNO, -FYLD, -DYLD)

Season-wide mean CMDS

dbdata <- dbdata %>% mutate(MCMDS = rowMeans(.[, c("CMD1S", "CMD3S", "CMD6S", "CMD9S")], 
    na.rm = T)) %>% select(-CMD1S, -CMD3S, -CMD6S, -CMD9S)

[User input] Assign genos to phenos

This step is mostly copy-pasted from previous processing of IITA-specific data.

Uses 3 flat files, which are available e.g. here. Specifically, IITA_GBStoPhenoMaster_33018.csv, GBSdataMasterList_31818.csv and NRCRI_GBStoPhenoMaster_40318.csv. I copy them to the data/ sub-directory for the current analysis.

In addition, DArT-only samples are now expected to also have phenotypes. Therefore, checking for matches in new flatfiles, deposited in the data/ (see code below).

library(tidyverse); library(magrittr)
gbs2phenoMaster<-dbdata %>% 
  select(germplasmName) %>% 
  distinct %>% 
  left_join(read.csv(here::here("data","NRCRI_GBStoPhenoMaster_40318.csv"), 
                     stringsAsFactors = F)) %>% 
  mutate(FullSampleName=ifelse(grepl("C2a",germplasmName,ignore.case = T) & 
                                 is.na(FullSampleName),germplasmName,FullSampleName)) %>% 
  filter(!is.na(FullSampleName)) %>% 
  select(germplasmName,FullSampleName) %>% 
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              left_join(read.csv(here::here("data","IITA_GBStoPhenoMaster_33018.csv"), 
                                 stringsAsFactors = F)) %>% 
              filter(!is.na(FullSampleName)) %>% 
              select(germplasmName,FullSampleName)) %>% 
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                                 stringsAsFactors = F) %>% 
                          select(DNASample,FullSampleName) %>% 
                          rename(germplasmName=DNASample)) %>% 
              filter(!is.na(FullSampleName)) %>% 
              select(germplasmName,FullSampleName)) %>% 
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              mutate(germplasmSynonyms=ifelse(grepl("^UG",germplasmName,ignore.case = T),
                                              gsub("UG","Ug",germplasmName),germplasmName)) %>% 
              left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                                 stringsAsFactors = F) %>% 
                          select(DNASample,FullSampleName) %>% 
                          rename(germplasmSynonyms=DNASample)) %>% 
              filter(!is.na(FullSampleName)) %>% 
              select(germplasmName,FullSampleName)) %>%  
  bind_rows(dbdata %>% 
              select(germplasmName) %>% 
              distinct %>% 
              mutate(germplasmSynonyms=ifelse(grepl("^TZ",germplasmName,
                                                    ignore.case = T),
                                              gsub("TZ","",germplasmName),germplasmName)) %>% 
              left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                                 stringsAsFactors = F) %>% 
                          select(DNASample,FullSampleName) %>% 
                          rename(germplasmSynonyms=DNASample)) %>% 
              filter(!is.na(FullSampleName)) %>%
              select(germplasmName,FullSampleName)) %>% 
  distinct %>% 
  left_join(read.csv(here::here("data","GBSdataMasterList_31818.csv"), 
                     stringsAsFactors = F) %>% 
              select(FullSampleName,OrigKeyFile,Institute) %>% 
              rename(OriginOfSample=Institute)) %>% 
  mutate(OrigKeyFile=ifelse(grepl("C2a",germplasmName,ignore.case = T),
                            ifelse(is.na(OrigKeyFile),"LavalGBS",OrigKeyFile),
                            OrigKeyFile),
         OriginOfSample=ifelse(grepl("C2a",germplasmName,ignore.case = T),
                               ifelse(is.na(OriginOfSample),"NRCRI",OriginOfSample),
                               OriginOfSample))
## NEW: check for germName-DArT name matches
germNamesWithoutGBSgenos<-dbdata %>% 
  select(programName,germplasmName) %>% 
  distinct %>% 
  left_join(gbs2phenoMaster) %>% 
  filter(is.na(FullSampleName)) %>% 
  select(-FullSampleName)

germNamesWithDArT<-germNamesWithoutGBSgenos %>% 
  inner_join(read.table(here::here("data","chr1_RefPanelAndGSprogeny_ReadyForGP_72719.fam"), header = F, stringsAsFactors = F)$V2 %>% 
               grep("TMS16|TMS17|TMS18|TMS19|TMS20",.,value = T, ignore.case = T) %>% 
               tibble(dartName=.) %>% 
               separate(dartName,c("germplasmName","dartID"),"_",extra = 'merge',remove = F)) %>% 
  group_by(germplasmName) %>% 
  slice(1) %>% 
  ungroup() %>% 
  rename(FullSampleName=dartName) %>% 
  mutate(OrigKeyFile="DArTseqLD", OriginOfSample="IITA") %>% 
  select(-dartID)
print(paste0(nrow(germNamesWithDArT)," germNames with DArT-only genos"))
[1] "2401 germNames with DArT-only genos"
# [1] "2401 germNames with DArT-only genos"


# first, filter to just program-DNAorigin matches
germNamesWithGenos<-dbdata %>% 
  select(programName,germplasmName) %>% 
  distinct %>% 
  left_join(gbs2phenoMaster) %>% 
  filter(!is.na(FullSampleName))
print(paste0(nrow(germNamesWithGenos)," germNames with GBS genos"))
[1] "9323 germNames with GBS genos"
# [1] "9323 germNames with GBS genos"

# program-germNames with locally sourced GBS samples
germNamesWithGenos_HasLocalSourcedGBS<-germNamesWithGenos %>% 
  filter(programName==OriginOfSample) %>% 
  select(programName,germplasmName) %>% 
  semi_join(germNamesWithGenos,.) %>% 
  group_by(programName,germplasmName) %>% # select one DNA per germplasmName per program
  slice(1) %>% ungroup() 
print(paste0(nrow(germNamesWithGenos_HasLocalSourcedGBS)," germNames with local GBS genos"))
[1] "8257 germNames with local GBS genos"
# [1] "8257 germNames with local GBS genos"

# the rest (program-germNames) with GBS but coming from a different breeding program
germNamesWithGenos_NoLocalSourcedGBS<-germNamesWithGenos %>% 
  filter(programName==OriginOfSample) %>% 
  select(programName,germplasmName) %>% 
  anti_join(germNamesWithGenos,.) %>% 
  # select one DNA per germplasmName per program
  group_by(programName,germplasmName) %>% 
  slice(1) %>% ungroup() 
print(paste0(nrow(germNamesWithGenos_NoLocalSourcedGBS)," germNames without local GBS genos"))
[1] "167 germNames without local GBS genos"
# [1] "167 germNames without local GBS genos"

genosForPhenos<-bind_rows(germNamesWithGenos_HasLocalSourcedGBS,
                        germNamesWithGenos_NoLocalSourcedGBS) %>% 
  bind_rows(germNamesWithDArT)

print(paste0(nrow(genosForPhenos)," total germNames with genos either GBS or DArT"))
[1] "10825 total germNames with genos either GBS or DArT"
# [1] "10825 total germNames with genos either GBS or DArT"

dbdata %<>% 
    left_join(genosForPhenos) 

# Create a new identifier, GID
## Equals the value SNP data name (FullSampleName) 
## else germplasmName if no SNP data
dbdata %<>% 
  mutate(GID=ifelse(is.na(FullSampleName),germplasmName,FullSampleName))
# going to check against SNP data
# snps<-readRDS(file=url(paste0('ftp://ftp.cassavabase.org/marnin_datasets/NGC_BigData/',
# 'DosageMatrix_RefPanelAndGSprogeny_ReadyForGP_73019.rds')))
# rownames_snps<-rownames(snps); rm(snps); gc() # current matches to SNP data
# dbdata %>% distinct(GID,germplasmName,FullSampleName) %>%
# semi_join(tibble(GID=rownames_snps)) %>% nrow() # 10707 dbdata %>%
# distinct(GID,germplasmName,FullSampleName) %>%
# semi_join(tibble(GID=rownames_snps)) %>%
# filter(grepl('TMS13|2013_',GID,ignore.case = F)) %>% nrow() # 2424 TMS13 dbdata
# %>% distinct(GID,germplasmName,FullSampleName) %>%
# semi_join(tibble(GID=rownames_snps)) %>% filter(grepl('TMS14',GID,ignore.case =
# F)) %>% nrow() # 2236 TMS14 dbdata %>%
# distinct(GID,germplasmName,FullSampleName) %>%
# semi_join(tibble(GID=rownames_snps)) %>% filter(grepl('TMS15',GID,ignore.case =
# F)) %>% nrow() # 2287 TMS15 dbdata %>%
# distinct(GID,germplasmName,FullSampleName) %>%
# semi_join(tibble(GID=rownames_snps)) %>% filter(grepl('TMS18',GID,ignore.case =
# F)) %>% nrow() # 2401 TMS18

[User input] Choose locations

WARNING: User input required! If I had preselected locations before downloading, this wouldn’t have been necessary.

Based on previous locations used for IITA analysis, but adding based on list of locations used in IYR’s trial list data/2019_GS_PhenoUpload.csv: “Ago-Owu” wasn’t used last year.

dbdata %<>% filter(locationName %in% c("Abuja", "Ago-Owu", "Ibadan", "Ikenne", "Ilorin", 
    "Jos", "Kano", "Malam Madori", "Mokwa", "Ubiaja", "Umudike", "Warri", "Zaria"))
nrow(dbdata)  # [1] 432408
[1] 432408

Output “cleaned” file

saveRDS(dbdata, file = here::here("output", "IITA_CleanedTrialData_2020Dec03.rds"))

Next step

  1. Get BLUPs combining all trial data: Detect experimental designs, Combine data from all trait-trials to get BLUPs for downstream genomic predictions.

sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] magrittr_2.0.1  forcats_0.5.0   stringr_1.4.0   dplyr_1.0.2    
 [5] purrr_0.3.4     readr_1.4.0     tidyr_1.1.2     tibble_3.0.4   
 [9] ggplot2_3.3.2   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.0  xfun_0.19         haven_2.3.1       colorspace_2.0-0 
 [5] vctrs_0.3.5       generics_0.1.0    htmltools_0.5.0   yaml_2.2.1       
 [9] utf8_1.1.4        rlang_0.4.9       later_1.1.0.1     pillar_1.4.7     
[13] withr_2.3.0       glue_1.4.2        DBI_1.1.0         dbplyr_2.0.0     
[17] modelr_0.1.8      readxl_1.3.1      lifecycle_0.2.0   munsell_0.5.0    
[21] gtable_0.3.0      cellranger_1.1.0  rvest_0.3.6       evaluate_0.14    
[25] knitr_1.30        ps_1.4.0          httpuv_1.5.4      fansi_0.4.1      
[29] broom_0.7.2       Rcpp_1.0.5        promises_1.1.1    backports_1.2.0  
[33] scales_1.1.1      formatR_1.7       jsonlite_1.7.1    fs_1.5.0         
[37] hms_0.5.3         digest_0.6.27     stringi_1.5.3     rprojroot_2.0.2  
[41] grid_4.0.2        here_1.0.0        cli_2.2.0         tools_4.0.2      
[45] crayon_1.3.4      whisker_0.4       pkgconfig_2.0.3   ellipsis_0.3.1   
[49] xml2_1.3.2        reprex_0.3.0      lubridate_1.7.9.2 rstudioapi_0.13  
[53] assertthat_0.2.1  rmarkdown_2.5     httr_1.4.2        R6_2.5.0         
[57] git2r_0.27.1      compiler_4.0.2