Last updated: 2020-12-04
Checks: 7 0
Knit directory: IITA_2020GS/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200915)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 063cb62. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: data/.DS_Store
Ignored: output/.DS_Store
Untracked files:
Untracked: data/GEBV_IITA_OutliersRemovedTRUE_73119.csv
Untracked: data/PedigreeGeneticGainCycleTime_aafolabi_01122020.csv
Untracked: data/iita_blupsForCrossVal_outliersRemoved_73019.rds
Untracked: output/DosageMatrix_IITA_2020Sep16.rds
Untracked: output/IITA_CleanedTrialData_2020Dec03.rds
Untracked: output/IITA_ExptDesignsDetected_2020Dec03.rds
Untracked: output/Kinship_AA_IITA_2020Sep16.rds
Untracked: output/Kinship_AD_IITA_2020Sep16.rds
Untracked: output/Kinship_A_IITA_2020Sep16.rds
Untracked: output/Kinship_DD_IITA2020Sep16.rds
Untracked: output/Kinship_D_IITA_2020Sep16.rds
Untracked: output/cvresults_ModelADE_chunk1.rds
Untracked: output/cvresults_ModelADE_chunk2.rds
Untracked: output/cvresults_ModelADE_chunk3.rds
Untracked: output/genomicPredictions_ModelADE_threestage_IITA_2020Sep21.rds
Untracked: output/genomicPredictions_ModelADE_twostage_IITA_2020Dec03.rds
Untracked: output/genomicPredictions_ModelA_threestage_IITA_2020Sep21.rds
Untracked: output/iita_blupsForModelTraining_twostage_asreml_2020Dec03.rds
Untracked: workflowr_log.R
Unstaged changes:
Modified: output/IITA_ExptDesignsDetected.rds
Modified: output/iita_blupsForModelTraining.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/06-Results.Rmd
) and HTML (docs/06-Results.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 063cb62 | wolfemd | 2020-12-04 | Making the tables not suck. |
html | 8ae6386 | wolfemd | 2020-12-04 | Build site. |
Rmd | 698c5fb | wolfemd | 2020-12-04 | Making the tables not suck. |
html | 4ac9fe3 | wolfemd | 2020-12-04 | Build site. |
Rmd | 79b6430 | wolfemd | 2020-12-04 | Update the analysis of rate-of-gain. Include regressions and output |
html | 7bae38d | wolfemd | 2020-12-03 | Build site. |
Rmd | 3cd0f44 | wolfemd | 2020-12-03 | Refresh BLUPs and GBLUPs with trials harvested so far. Include |
html | b9bb6f8 | wolfemd | 2020-12-03 | Build site. |
Rmd | 9718666 | wolfemd | 2020-12-03 | Refresh BLUPs and GBLUPs with trials harvested so far. Include |
html | c97b21b | wolfemd | 2020-11-27 | Build site. |
Rmd | 1f8cd99 | wolfemd | 2020-11-27 | Added plots of genetic gain for 4 traits. Initial analysis of GEBV vs. |
html | d72a9ed | wolfemd | 2020-09-21 | Build site. |
html | 9194239 | wolfemd | 2020-09-21 | Build site. |
Rmd | 97778e7 | wolfemd | 2020-09-21 | Big update. Two types of pipeline to get BLUPs, GEBVs and GETGVs: |
Conducted 5-fold x 5-reps of cross-validation (here). Three traits only, MCMDS, logFYLD, DM.
library(tidyverse)
library(magrittr)
<- readRDS(here::here("output", "cvresults_ModelA_chunk1.rds")) %>% bind_rows(readRDS(here::here("output",
cvresults "cvresults_ModelA_chunk2.rds"))) %>% bind_rows(readRDS(here::here("output", "cvresults_ModelA_chunk3.rds"))) %>%
mutate(Model = "A") %>% bind_rows(readRDS(here::here("output", "cvresults_ModelADE_chunk1.rds")) %>%
bind_rows(readRDS(here::here("output", "cvresults_ModelADE_chunk2.rds"))) %>%
bind_rows(readRDS(here::here("output", "cvresults_ModelADE_chunk3.rds"))) %>%
mutate(Model = "ADE"))
%>% select(Trait, repeats, id, VersionOfBLUPs, accGEBV, Model) %>% ggplot(.,
cvresults aes(x = Model, y = accGEBV, fill = VersionOfBLUPs)) + geom_boxplot() + theme_bw() +
facet_wrap(~Trait, scales = "free") + scale_fill_viridis_d() + labs(title = "GEBV: Compare 3-stage and 2-stage prediction pipelines")
%>% select(Trait, repeats, id, VersionOfBLUPs, accGETGV, Model) %>% ggplot(.,
cvresults aes(x = Model, y = accGETGV, fill = VersionOfBLUPs)) + geom_boxplot() + theme_bw() +
facet_wrap(~Trait, scales = "free") + scale_fill_viridis_d() + labs(title = "GETGV: Compare 3-stage and 2-stage prediction pipelines")
%>% select(Trait, Model, repeats, id, VersionOfBLUPs, accGEBV) %>% spread(VersionOfBLUPs,
cvresults %>% mutate(diffAcc = blups2stage - blups3stage) %>% ggplot(., aes(x = Model,
accGEBV) y = diffAcc, fill = Trait)) + geom_hline(yintercept = 0, color = "darkred") +
geom_boxplot() + theme_bw() + facet_wrap(~Trait, scales = "free") + scale_fill_viridis_d() +
labs(y = "Accuracy Difference (2-stage minus 3-stage)", title = "GEBV")
Version | Author | Date |
---|---|---|
b9bb6f8 | wolfemd | 2020-12-03 |
%>% select(Trait, Model, repeats, id, VersionOfBLUPs, accGETGV) %>% spread(VersionOfBLUPs,
cvresults %>% mutate(diffAcc = blups2stage - blups3stage) %>% ggplot(., aes(x = Model,
accGETGV) y = diffAcc, fill = Trait)) + geom_hline(yintercept = 0, color = "darkred") +
geom_boxplot() + theme_bw() + facet_wrap(~Trait, scales = "free") + scale_fill_viridis_d() +
labs(y = "Accuracy Difference (2-stage minus 3-stage)", title = "GETGV")
Version | Author | Date |
---|---|---|
b9bb6f8 | wolfemd | 2020-12-03 |
%>% filter(VersionOfBLUPs == "blups2stage") %>% select(Trait, repeats,
cvresults %>% ggplot(., aes(x = Trait, y = accGETGV,
id, VersionOfBLUPs, accGETGV, Model) fill = Model)) + geom_boxplot(color = "gray60", notch = T) + theme_bw() + facet_wrap(~Trait,
scales = "free") + scale_fill_viridis_d() + labs(title = "Compare accuracy: models A vs. ADE")
Version | Author | Date |
---|---|---|
b9bb6f8 | wolfemd | 2020-12-03 |
library(tidyverse)
library(magrittr)
<- read.csv(here::here("output", "GEBV_IITA_ModelA_twostage_IITA_2020Sep21.csv"),
iita_gebvs stringsAsFactors = F)
<- c("DM", "logFYLD", "logTOPYLD", "MCMDS")
traits %>% select(GID, GeneticGroup, any_of(traits)) %>% pivot_longer(cols = any_of(traits),
iita_gebvs names_to = "Trait", values_to = "GEBV") %>% group_by(Trait, GeneticGroup) %>%
summarize(meanGEBV = mean(GEBV), stdErr = sd(GEBV)/sqrt(n()), upperSE = meanGEBV +
lowerSE = meanGEBV - stdErr) %>% ggplot(., aes(x = GeneticGroup,
stdErr, y = meanGEBV, fill = Trait)) + geom_bar(stat = "identity", color = "gray60",
size = 1.25) + geom_linerange(aes(ymax = upperSE, ymin = lowerSE), color = "gray60",
size = 1.25) + facet_wrap(~Trait, scales = "free_y", ncol = 1) + theme_bw() +
geom_hline(yintercept = 0, size = 1.15, color = "black") + theme(axis.text.x = element_text(face = "bold",
angle = 0, size = 12), axis.title.y = element_text(face = "bold", size = 14),
legend.position = "none", strip.background.x = element_blank(), strip.text = element_text(face = "bold",
size = 14)) + scale_fill_viridis_d() + labs(x = NULL, y = "Mean GEBVs")
Version | Author | Date |
---|---|---|
b9bb6f8 | wolfemd | 2020-12-03 |
# List of trials from 2020 to Prasad and Ismail... should I download fresh data?
# dbdata<-readRDS(here::here('output','IITA_CleanedTrialData.rds'))
# trialsHarvested2019to2020<-dbdata %>% filter(studyYear>=2019) %>%
# group_by(studyYear,locationName,studyName,plantingDate,harvestDate) %>%
# summarize(Nhav=sum(!is.na(NOHAV))) trialsHarvested2019to2020 %>%
# write.csv(.,file=here::here('output','trials_uploaded_by_Nharvested_15Sep2020.csv'),
# row.names=F)
Start by merging the “accession year” variable with the GETGVs.
library(tidyverse)
library(magrittr)
<- read.csv(here::here("output", "GETGV_IITA_ModelADE_twostage_IITA_2020Dec03.csv"),
iita_getgvs stringsAsFactors = F)
<- c("logDYLD", "logFYLD", "MCMDS", "DM", "BCHROMO", "BRLVLS", "HI", "logTOPYLD")
traits # traits<-c('MCMDS','DM','PLTHT','BRNHT1','BRLVLS','HI', 'logDYLD',
# 'logFYLD','logTOPYLD','logRTNO','TCHART','LCHROMO','ACHROMO','BCHROMO')
<- readxl::read_xls(here::here("data", "PedigreeGeneticGainCycleTime_aafolabi_01122020.xls"))
ggcycletime # table(ggcycletime$Accession %in% iita_getgvs$GID) FALSE 807 Need germplasmName
# field from raw trial data to match GEBV and cycle time
<- readRDS(here::here("output", "IITA_ExptDesignsDetected_2020Dec03.rds"))
dbdata %<>% left_join(dbdata %>% select(-MaxNOHAV) %>% unnest(TrialData) %>%
iita_getgvs distinct(germplasmName, GID)) %>% group_by(GID) %>% slice(1) %>% ungroup()
rm(dbdata)
# table(ggcycletime$Accession %in% iita_getgvs$germplasmName) FALSE TRUE 193 614
# table(ggcycletime$Year_Accession)
%<>% left_join(., ggcycletime %>% rename(germplasmName = Accession) %>%
iita_getgvs mutate(Year_Accession = as.numeric(Year_Accession)))
%<>% mutate(Year_Accession = case_when(grepl("2013_|TMS13", germplasmName) ~
iita_getgvs 2013, grepl("TMS14", germplasmName) ~ 2014, grepl("TMS15", germplasmName) ~ 2015,
grepl("TMS18", germplasmName) ~ 2018, !grepl("2013_|TMS13|TMS14|TMS15|TMS18",
~ Year_Accession))
germplasmName)
write.csv(iita_getgvs, file = here::here("output", "GETGV_IITA_ModelADE_twostage_IITA_2020Dec03_withAccessionYear.csv"),
row.names = F)
Key output is a file output/GETGV_IITA_ModelADE_twostage_IITA_2020Dec03_withAccessionYear.csv
for use in downstream analyses.
rm(list = ls())
library(tidyverse)
library(magrittr)
<- read.csv(here::here("output", "GETGV_IITA_ModelADE_twostage_IITA_2020Dec03_withAccessionYear.csv"),
iita_getgvs stringsAsFactors = F)
<- c("logDYLD", "logFYLD", "MCMDS", "DM", "BCHROMO", "BRLVLS", "HI", "logTOPYLD") traits
Plot B-value and decide on a threshold for removing “yellow” clones from the analysis.
# iita_getgvs %>% ggplot(.,aes(x=TCHART,y=BCHROMO)) + geom_hex() + theme_bw() +
# facet_wrap(~GeneticGroup, nrow=1) + theme(legend.position = 'none') +
# geom_vline(xintercept = 0.5) + geom_hline(yintercept = 5) +
# labs(title='Arbitrary suggested cut-offs for `white` rooted GETGVs', subtitle =
# 'horiz. and vert. lines')
%>%
iita_getgvs ggplot(.,aes(x=BCHROMO)) + geom_histogram() +
theme_bw() + #facet_wrap(~GeneticGroup, nrow=1) +
theme(legend.position = 'none') +
geom_vline(xintercept = 1, color='darkred') + # geom_hline(yintercept = 5) +
labs(title="Histogram of GETGV for chromometer B-value",
subtitle = "Cut-offs for `white` roots == 1")
Version | Author | Date |
---|---|---|
4ac9fe3 | wolfemd | 2020-12-04 |
Remove clones between 2005 and 2012.
Declare the “eras” as PreGS<2012 and GS>=2013.
%<>% filter(Year_Accession > 2012 | Year_Accession < 2005)
iita_getgvs
%<>% mutate(GeneticGroup = ifelse(Year_Accession >= 2013, "GS", "PreGS")) iita_getgvs
Number of clones for each “era” that
%>% select(GeneticGroup, GID, Year_Accession, all_of(traits)) %>% count(Nclone = GeneticGroup) iita_getgvs
Nclone n
1 GS 7800
2 PreGS 449
Number of white root clones (BCHROMO<=1
).
%>% select(GeneticGroup, GID, Year_Accession, all_of(traits)) %>% filter(BCHROMO <=
iita_getgvs 1) %>% count(NwhiteRoot = GeneticGroup)
NwhiteRoot n
1 GS 5568
2 PreGS 346
Group by Era (Genetic Group) and fit a simple linear regression for each trait, i.e. lm(GETGV ~ Year_Accession)
.
Fit model to “all clones” and then to “white root clones only”.
<- iita_getgvs %>% select(GeneticGroup, GID, Year_Accession, all_of(traits)) %>%
model_rawgetgvs mutate(Dataset = "AllGermplasm") %>% bind_rows(iita_getgvs %>% select(GeneticGroup,
all_of(traits)) %>% filter(BCHROMO <= 1) %>% mutate(Dataset = "WhiteRootClones")) %>%
GID, Year_Accession, pivot_longer(cols = all_of(traits), names_to = "Trait", values_to = "GETGV") %>%
nest(data = c(GID, Year_Accession, GETGV)) %>% mutate(model = map(data, ~lm(formula = "GETGV~Year_Accession",
data = .)))
Extract the model effects, etc.
%<>% mutate(out = map(model, ~broom::glance(.))) %>% unnest(out)
model_rawgetgvs %<>% mutate(out = map(model, ~broom::tidy(.)))
model_rawgetgvs %<>% mutate(out = map(out, ~select(., term, estimate) %>% spread(term,
model_rawgetgvs %>% unnest(out) %>% rename(InterceptEst = `(Intercept)`, YearAccessionEst = Year_Accession) %>%
estimate))) select(Dataset, GeneticGroup, Trait, r.squared, nobs, InterceptEst, YearAccessionEst)
Basic summary of linear models
%>% rmarkdown::paged_table() model_rawgetgvs
Compare slope estimates between “eras”
%>% select(Dataset, GeneticGroup, Trait, YearAccessionEst) %>% spread(GeneticGroup,
model_rawgetgvs %>% rmarkdown::paged_table() YearAccessionEst)
Add some summary of the raw data that went into the GETGV analyzed above.
# summarize the raw plot data
<- readRDS(here::here("output", "IITA_ExptDesignsDetected_2020Dec03.rds")) %>%
dbdata ::select(-MaxNOHAV) %>% unnest(TrialData) %>% dplyr::select(programName,
dplyr
locationName, studyYear, TrialType, studyName, CompleteBlocks, IncompleteBlocks,
yearInLoc, trialInLocYr, repInTrial, blockInRep, observationUnitDbId, germplasmName, all_of(traits), PropNOHAV) %>% mutate(IncompleteBlocks = ifelse(IncompleteBlocks ==
FullSampleName, GID, TRUE, "Yes", "No"), CompleteBlocks = ifelse(CompleteBlocks == TRUE, "Yes", "No")) %>%
pivot_longer(cols = all_of(traits), names_to = "Trait", values_to = "Value") %>%
filter(!is.na(Value), !is.na(GID)) %>% nest(MultiTrialTraitData = c(-Trait))
<- dbdata %>% mutate(NplotsTotal = map_dbl(MultiTrialTraitData,
trainingdata_summary nplot = map(MultiTrialTraitData, ~count(., TrialType) %>% mutate(TrialType = paste0("Nplots_",
nrow), %>% spread(TrialType, n) %>% select(any_of(paste0("Nplots_", c("CrossingBlock",
TrialType)) "GeneticGain", "CET", "ExpCET", "PYT", "AYT", "UYT", "NCRP")))))) %>% unnest(nplot) %>%
select(-MultiTrialTraitData) %>% # and add a summary of the BLUPs that result which were then later used for
# prediction
left_join(readRDS(file = here::here("output", "iita_blupsForModelTraining_twostage_asreml_2020Dec03.rds")) %>%
filter(Trait %in% traits) %>% mutate(NclonesWithBLUPs = map_dbl(blups, nrow)) %>%
select(Trait, NclonesWithBLUPs, Vg, Ve, H2))
Print a summary of the raw plots and resulting BLUPs that went into the GETGV .
%>% rmarkdown::paged_table() trainingdata_summary
Write model summaries to disk: output/model_rawgetgvs_vs_year.csv
.
Write training data summary to disk: output/training_data_summary.csv
write.csv(trainingdata_summary, file = here::here("output", "training_data_summary.csv"),
row.names = F)
write.csv(model_rawgetgvs, file = here::here("output", "model_rawgetgvs_vs_year.csv"),
row.names = F)
%>% select(GeneticGroup, GID, Year_Accession, all_of(traits)) %>% pivot_longer(cols = all_of(traits),
iita_getgvs names_to = "Trait", values_to = "GETGV") %>% mutate(Trait = factor(Trait, traits)) %>%
ggplot(., aes(x = Year_Accession, y = GETGV, color = GeneticGroup)) + geom_point(size = 1.25) +
geom_smooth(method = lm, se = TRUE, size = 1.5) + facet_wrap(~Trait, scales = "free_y",
ncol = 2) + theme_bw() + theme(axis.text = element_text(face = "bold", angle = 0,
size = 14), axis.title = element_text(face = "bold", size = 16), strip.background.x = element_blank(),
strip.text = element_text(face = "bold", size = 18)) + scale_color_viridis_d() +
labs(title = "Regression of raw GETGV vs. Year_Accession by 'era' [GS vs. PreGS]",
subtitle = "All Germplasm")
Version | Author | Date |
---|---|---|
4ac9fe3 | wolfemd | 2020-12-04 |
%>% select(GeneticGroup, GID, Year_Accession, all_of(traits)) %>% filter(BCHROMO <=
iita_getgvs 1) %>% pivot_longer(cols = all_of(traits), names_to = "Trait", values_to = "GETGV") %>%
mutate(Trait = factor(Trait, traits)) %>% ggplot(., aes(x = Year_Accession, y = GETGV,
color = GeneticGroup)) + geom_point(size = 1.25) + geom_smooth(method = lm, se = TRUE,
size = 1.5) + facet_wrap(~Trait, scales = "free_y", ncol = 2) + theme_bw() +
theme(axis.text = element_text(face = "bold", angle = 0, size = 14), axis.title = element_text(face = "bold",
size = 16), strip.background.x = element_blank(), strip.text = element_text(face = "bold",
size = 18)) + scale_color_viridis_d() + labs(title = "Regression of raw GETGV vs. Year_Accession by 'era' [GS vs. PreGS]",
subtitle = "White Root Germplasm (BCHROMO<=1)")
I recommend using the analysis and maybe also the plots above.
For completeness, below is an analysis and plots using the meanGETGV-by-year.
Compute mean and std. error by Dataset (“all germplasm” vs. “white root clones only”) and GeneticGroup (“GS” vs. “PreGS”).
<- iita_getgvs %>% select(GeneticGroup, GID, Year_Accession, all_of(traits)) %>%
mean_getgvs mutate(Dataset = "AllGermplasm") %>% bind_rows(iita_getgvs %>% select(GeneticGroup,
all_of(traits)) %>% filter(BCHROMO <= 1) %>% mutate(Dataset = "WhiteRootClones")) %>%
GID, Year_Accession, select(Dataset, GeneticGroup, GID, Year_Accession, all_of(traits)) %>% pivot_longer(cols = all_of(traits),
names_to = "Trait", values_to = "GETGV") %>% group_by(Dataset, Trait, GeneticGroup,
%>% summarize(meanGETGV = mean(GETGV), Nclones = n(), stdErr = sd(GETGV)/sqrt(n()),
Year_Accession) upperSE = meanGETGV + stdErr, lowerSE = meanGETGV - stdErr) %>% ungroup()
write.csv(mean_getgvs, file = here::here("output", "meanGETGVbyYear_IITA_2020Dec03.csv"),
row.names = F)
Group by Era (Genetic Group) and fit a simple linear regression for each trait, i.e. lm(GETGV ~ Year_Accession)
.
<- mean_getgvs %>% nest(data = c(-Dataset, -Trait, -GeneticGroup)) %>%
model_meangetgvs mutate(model = map(data, ~lm(formula = "meanGETGV~Year_Accession", data = .)))
Extract the model effects, etc.
%<>% mutate(out = map(model, ~broom::glance(.))) %>% unnest(out) %>%
model_meangetgvs mutate(out = map(model, ~broom::tidy(.))) %>% mutate(out = map(out, ~select(.,
%>% spread(term, estimate))) %>% unnest(out) %>% rename(InterceptEst = `(Intercept)`,
term, estimate) YearAccessionEst = Year_Accession) %>% select(Dataset, GeneticGroup, Trait, r.squared,
nobs, InterceptEst, YearAccessionEst)
Basic summary of linear models
%>% rmarkdown::paged_table() model_meangetgvs
Compare slope estimates between “eras”
%>% select(Dataset, GeneticGroup, Trait, YearAccessionEst) %>% spread(GeneticGroup,
model_meangetgvs %>% rmarkdown::paged_table() YearAccessionEst)
Save these estimates also to disk at: output/model_meangetgvs_vs_year.csv
write.csv(model_meangetgvs, file = here::here("output", "model_meangetgvs_vs_year.csv"),
row.names = F)
%>% filter(Dataset == "AllGermplasm") %>% mutate(Trait = factor(Trait,
mean_getgvs %>% ggplot(., aes(x = Year_Accession, y = meanGETGV, color = GeneticGroup,
traits)) size = Nclones)) + geom_point(size = 4) + geom_smooth(method = lm, se = TRUE) +
geom_linerange(aes(ymax = upperSE, ymin = lowerSE), color = "gray40", size = 1) +
facet_wrap(~Trait, scales = "free_y", ncol = 2) + theme_bw() + theme(axis.text = element_text(face = "bold",
angle = 0, size = 14), axis.title = element_text(face = "bold", size = 16), strip.background.x = element_blank(),
strip.text = element_text(face = "bold", size = 18)) + scale_color_viridis_d() +
labs(title = "meanGETGV vs. Year_Accession - All Germplasm", subtitle = "Mean across all clones within Year_Accession")
Version | Author | Date |
---|---|---|
4ac9fe3 | wolfemd | 2020-12-04 |
%>% filter(Dataset == "WhiteRootClones") %>% mutate(Trait = factor(Trait,
mean_getgvs %>% ggplot(., aes(x = Year_Accession, y = meanGETGV, color = GeneticGroup,
traits)) size = Nclones)) + geom_point(size = 4) + geom_smooth(method = lm, se = TRUE) +
geom_linerange(aes(ymax = upperSE, ymin = lowerSE), color = "gray40", size = 1) +
facet_wrap(~Trait, scales = "free_y", ncol = 2) + theme_bw() + theme(axis.text = element_text(face = "bold",
angle = 0, size = 14), axis.title = element_text(face = "bold", size = 16), strip.background.x = element_blank(),
strip.text = element_text(face = "bold", size = 18)) + scale_color_viridis_d() +
labs(title = "meanGETGV vs. Year_Accession - White rooted germplasm", subtitle = "Mean across all clones within Year_Accession")
Version | Author | Date |
---|---|---|
4ac9fe3 | wolfemd | 2020-12-04 |
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] magrittr_2.0.1 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2
[5] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2 tibble_3.0.4
[9] ggplot2_3.3.2 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.5 lattice_0.20-41 lubridate_1.7.9.2 here_1.0.0
[5] ps_1.4.0 assertthat_0.2.1 rprojroot_2.0.2 digest_0.6.27
[9] R6_2.5.0 cellranger_1.1.0 backports_1.2.0 reprex_0.3.0
[13] evaluate_0.14 httr_1.4.2 pillar_1.4.7 rlang_0.4.9
[17] readxl_1.3.1 rstudioapi_0.13 whisker_0.4 Matrix_1.2-18
[21] rmarkdown_2.5 splines_4.0.2 labeling_0.4.2 munsell_0.5.0
[25] broom_0.7.2 compiler_4.0.2 httpuv_1.5.4 modelr_0.1.8
[29] xfun_0.19 pkgconfig_2.0.3 mgcv_1.8-33 htmltools_0.5.0
[33] tidyselect_1.1.0 fansi_0.4.1 viridisLite_0.3.0 crayon_1.3.4
[37] dbplyr_2.0.0 withr_2.3.0 later_1.1.0.1 grid_4.0.2
[41] nlme_3.1-150 jsonlite_1.7.1 gtable_0.3.0 lifecycle_0.2.0
[45] DBI_1.1.0 git2r_0.27.1 formatR_1.7 scales_1.1.1
[49] cli_2.2.0 stringi_1.5.3 farver_2.0.3 fs_1.5.0
[53] promises_1.1.1 xml2_1.3.2 ellipsis_0.3.1 generics_0.1.0
[57] vctrs_0.3.5 tools_4.0.2 glue_1.4.2 hms_0.5.3
[61] yaml_2.2.1 colorspace_2.0-0 rvest_0.3.6 knitr_1.30
[65] haven_2.3.1