Last updated: 2021-03-24
Checks: 7 0
Knit directory: PredictOutbredCrossVar/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20191123)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 45e6b20. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/.DS_Store
Untracked files:
Untracked: Icon
Untracked: PredictOutbredCrossVarMS_ResponseToReviews_R1.gdoc
Untracked: figure/
Untracked: manuscript/
Untracked: output/crossPredictions/
Untracked: output/gblups_DirectionalDom_parentwise_crossVal_folds.rds
Untracked: output/gblups_geneticgroups.rds
Untracked: output/gblups_parentwise_crossVal_folds.rds
Untracked: output/mtMarkerEffects/
Unstaged changes:
Modified: analysis/NGCleadersCall.Rmd
Modified: code/fitDirectionalDomMtBRR.R
Modified: code/fitmtBRR.R
Modified: code/getDirectionalDomGenomicBLUPs.R
Modified: code/getDirectionalDomMtCrossMeanPreds.R
Modified: code/getDirectionalDomMtCrossVarBVpreds.R
Modified: code/getDirectionalDomMtCrossVarTGVpreds.R
Modified: code/getDirectionalDomVarComps.R
Modified: code/getGenomicBLUPs.R
Modified: code/getMtCrossMeanPreds.R
Modified: code/getMtCrossVarPreds.R
Modified: code/getUntestedMtCrossVarPreds.R
Modified: code/getVarComps.R
Modified: data/blups_forawcdata.rds
Modified: data/genmap_awc_May2020.rds
Modified: data/parentwise_crossVal_folds.rds
Modified: data/ped_awc.rds
Modified: data/selection_index_weights_4traits.rds
Modified: output/CrossesToPredict_top100stdSI_and_209originalParents.rds
Modified: output/accuraciesMeans.rds
Modified: output/accuraciesUC.rds
Modified: output/accuraciesVars.rds
Modified: output/crossRealizations/realizedCrossMeans.rds
Modified: output/crossRealizations/realizedCrossMeans_BLUPs.rds
Modified: output/crossRealizations/realizedCrossMetrics.rds
Modified: output/crossRealizations/realizedCrossVars.rds
Modified: output/crossRealizations/realizedCrossVars_BLUPs.rds
Modified: output/crossRealizations/realized_cross_means_and_covs_traits.rds
Modified: output/crossRealizations/realized_cross_means_and_vars_selindices.rds
Modified: output/ddEffects.rds
Modified: output/gebvs_ModelA_GroupAll_stdSI.rds
Modified: output/obsVSpredMeans.rds
Modified: output/obsVSpredUC.rds
Modified: output/obsVSpredVars.rds
Modified: output/pmv_DirectionalDom_varcomps_geneticgroups.rds
Modified: output/pmv_varcomps_geneticgroups.rds
Modified: output/pmv_varcomps_geneticgroups_tidy_includingSIvars.rds
Modified: output/propHomozygous.rds
Modified: output/top100stdSI.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/predictionAccuracy.Rmd
) and HTML (docs/predictionAccuracy.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | be1e9fc | wolfemd | 2021-03-24 | Build site. |
Rmd | f73b05f | wolfemd | 2021-03-24 | Update to match revised manuscript. Several comparisons moved to Appendix to streamline primary results, figures, etc. |
html | 4de1330 | wolfemd | 2021-02-01 | Build site. |
Rmd | 883b1d4 | wolfemd | 2021-02-01 | Update the syntax highlighting and code-block formatting throughout for |
Rmd | 6a10c30 | wolfemd | 2021-01-04 | Submission and GitHub ready version. |
html | 6a10c30 | wolfemd | 2021-01-04 | Submission and GitHub ready version. |
Format predicted and observed values so prediction accuracy can be computed.
library(tidyverse); library(magrittr); library(predCrossVar)
<-readRDS(here::here("output/crossPredictions","predictedCrossMeans_tidy_withSelIndices.rds"))
predmeans<-readRDS(here::here("output/crossPredictions","predictedCrossMeans_DirectionalDom_tidy_withSelIndices.rds"))
predmeans_dd#predmeans %>% count(Model,predOf)
#predmeans_dd %>% count(predOf)
%<>%
predmeans bind_rows(predmeans_dd %>%
mutate(Model=ifelse(predOf=="MeanBV","DirDomBV","DirDomAD"))) %>%
#rename(VarComp=predOf) %>%
mutate(predOf=gsub("MeanGV","MeanTGV",predOf))
rm(predmeans_dd)
#predmeans %>% count(Model,VarComp)
<-readRDS(here::here("output/crossRealizations","realizedCrossMeans.rds")) %>%
obsMeansrename(predOf=obsOf) %>%
mutate(Model=ifelse(Model=="DirDom",
ifelse(predOf=="MeanBV","DirDomBV","DirDomAD"),
Model))#obsMeans %>% count(Model,predOf)
<-readRDS(here::here("output/crossRealizations","realizedCrossMeans_BLUPs.rds"))
obsMeanBLUPs
<-bind_rows(left_join(predmeans,obsMeans) %>% mutate(ValidationData="GBLUPs"),
obsVSpredMeansleft_join(predmeans,obsMeanBLUPs) %>% mutate(ValidationData="iidBLUPs"))
# obsVSpredMeans %>% count(Model,ValidationData,VarComp) %>% spread(ValidationData,n)
# Variances
<-readRDS(here::here("output/crossPredictions","predictedCrossVars_tidy_withSelIndices.rds")) %>%
predvarsbind_rows(readRDS(here::here("output/crossPredictions","predictedCrossVars_DirectionalDom_tidy_withSelIndices.rds"))) %>%
select(-Nsegsnps,-totcomputetime) %>%
pivot_longer(cols=c(VPM,PMV),names_to = "VarMethod",values_to = "predVar") %>%
group_by(Repeat,Fold,Model,sireID,damID,Trait1,Trait2,VarMethod) %>%
# sum over VarComps (ModelA = VarA, ModelAD = VarA+VarD)
summarize(predVar=sum(predVar),.groups="drop") %>%
mutate(predOf=ifelse(Model %in% c("A","DirDomBV"),"VarBV",
ifelse(Model %in% c("AD","DirDomAD"),"VarTGV",NA)))
%>%
predvars count(Model,predOf)
# A tibble: 4 x 3
Model predOf n
<chr> <chr> <int>
1 A VarBV 99648
2 AD VarTGV 99648
3 DirDomAD VarTGV 99648
4 DirDomBV VarBV 99648
<-readRDS(here::here("output/crossRealizations","realizedCrossVars.rds")) %>%
obsVarsrename(predOf=obsOf) %>%
mutate(Model=ifelse(Model=="DirDom",
ifelse(predOf=="VarBV","DirDomBV","DirDomAD"),
Model))%>% count(Model,predOf) obsVars
# A tibble: 4 x 3
Model predOf n
<chr> <chr> <int>
1 A VarBV 40374
2 AD VarTGV 40374
3 DirDomAD VarTGV 40374
4 DirDomBV VarBV 40374
<-readRDS(here::here("output/crossRealizations","realizedCrossVars_BLUPs.rds"))
obsVarBLUPs
<-bind_rows(left_join(predvars,obsVars) %>% mutate(ValidationData="GBLUPs"),
obsVSpredVarsleft_join(predvars,obsVarBLUPs) %>% mutate(ValidationData="iidBLUPs"))
%>% count(Model,ValidationData,predOf) obsVSpredVars
# A tibble: 8 x 4
Model ValidationData predOf n
<chr> <chr> <chr> <int>
1 A GBLUPs VarBV 99648
2 A iidBLUPs VarBV 99648
3 AD GBLUPs VarTGV 99648
4 AD iidBLUPs VarTGV 99648
5 DirDomAD GBLUPs VarTGV 99648
6 DirDomAD iidBLUPs VarTGV 99648
7 DirDomBV GBLUPs VarBV 99648
8 DirDomBV iidBLUPs VarBV 99648
For ValidationData==“GBLUPs”, weight by the observed “FamSize”.
# add Family Sizes, for weighted correlations
%<>%
obsVSpredVars left_join(readRDS(file=here::here("output/crossRealizations","realizedCrossMetrics.rds")) %>%
distinct(Repeat,Fold,sireID,damID,FamSize) %>% ungroup())
%>% head obsVSpredVars
# A tibble: 6 x 13
Repeat Fold Model sireID damID Trait1 Trait2 VarMethod predVar predOf
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <chr>
1 Repeat1 Fold1 A IITA-TMS… IITA-TM… biofo… biofo… PMV 55.4 VarBV
2 Repeat1 Fold1 A IITA-TMS… IITA-TM… biofo… biofo… VPM 5.86 VarBV
3 Repeat1 Fold1 A IITA-TMS… IITA-TM… DM DM PMV 4.35 VarBV
4 Repeat1 Fold1 A IITA-TMS… IITA-TM… DM DM VPM 0.355 VarBV
5 Repeat1 Fold1 A IITA-TMS… IITA-TM… DM logFY… PMV -0.0762 VarBV
6 Repeat1 Fold1 A IITA-TMS… IITA-TM… DM logFY… VPM -0.00459 VarBV
# … with 3 more variables: obsVar <dbl>, ValidationData <chr>, FamSize <dbl>
For ValidationData==“iidBLUPs”, weight by the number of observed non-missing BLUPs per family per trait.
<-readRDS(file = here::here("data","parentwise_crossVal_folds.rds")) %>%
parentfoldsrename(Repeat=id,Fold=id2) %>%
select(Repeat,Fold,testparents)
<-readRDS(here::here("data","ped_awc.rds")) %>%
pednest(FamilyMembers=FullSampleName)
%<>%
parentfolds mutate(CrossesToPredict=map(testparents,~filter(ped,sireID %in% . | damID %in% .))) %>%
select(-testparents)
<-readRDS(file=here::here("data","selection_index_weights_4traits.rds"))
indices<-readRDS(here::here("data","blups_forawcdata.rds")) %>%
blupsselect(Trait,blups) %>%
unnest(blups) %>%
select(Trait,germplasmName,BLUP) %>%
spread(Trait,BLUP) %>%
select(germplasmName,all_of(c("DM","logFYLD","MCMDS","TCHART"))) # precaution to ensure consistent column order
<-parentfolds %>%
crossblupsunnest(CrossesToPredict) %>%
distinct(sireID,damID,FamilyMembers) %>%
unnest(FamilyMembers) %>%
rename(germplasmName=FullSampleName) %>%
left_join(blups) %>%
select(sireID,damID,germplasmName,all_of(indices$Trait)) %>%
nest(famblups=c(germplasmName,all_of(indices$Trait))) %>%
mutate(stdSI=map(famblups,~as.data.frame(.) %>%
column_to_rownames(var = "germplasmName") %>%
as.matrix(.)%*%indices$stdSI),
biofortSI=map(famblups,~as.data.frame(.) %>%
column_to_rownames(var = "germplasmName") %>%
as.matrix(.)%*%indices$biofortSI))
<-bind_rows(crossblups %>%
nObsselect(-famblups) %>%
mutate(stdSI=map_dbl(stdSI,~length(which(!is.na(.)))),
biofortSI=map_dbl(biofortSI,~length(which(!is.na(.))))) %>%
pivot_longer(cols = c(stdSI,biofortSI), names_to = "Trait1", values_to = "Nobs",values_drop_na = TRUE) %>%
mutate(Trait2=Trait1),
%>%
crossblups select(sireID,damID,famblups) %>%
mutate(famblups=map(famblups,function(famblups){
<-psych::pairwiseCount(famblups %>% select(-germplasmName),diagonal=TRUE)
NobsMatlower.tri(NobsMat, diag = F)]<-NA
NobsMat[%<>%
NobsMat %>%
as.data.frame rownames_to_column(var = "Trait1") %>%
pivot_longer(cols = -Trait1, names_to = "Trait2", values_to = "Nobs",values_drop_na = TRUE)
return(NobsMat) })) %>%
unnest(famblups))
rm(parentfolds,ped,indices,blups,crossblups)
# add N obs, for weighted correlations
%<>%
obsVSpredVars left_join(nObs) %>%
mutate(CorrWeight=ifelse(ValidationData=="GBLUPs",FamSize,Nobs))
# Usefulness
<-readRDS(file=here::here("output/crossRealizations","realizedCrossMetrics.rds"))
realizedcrossmetrics# previously only calculated UC accuracy
# for sel. indices
# Now include component traits
<-left_join(predvars %>% # Variances
predUsefulnessfilter(#Trait1 %in% c("stdSI","biofortSI"),
==Trait2) %>%
Trait1rename(Trait=Trait1) %>%
select(-Trait2) %>%
mutate(predOf=gsub("Var","",predOf)),
%>% # Means
predmeans #filter(Trait %in% c("stdSI","biofortSI")) %>%
mutate(predOf=gsub("Mean","",predOf))) %>%
mutate(predSD=sqrt(predVar)) %>%
select(-predVar)
## Add the realized selection intensities
## Create a variable "Stage" for which there are several applying to "Usefulness" for TGV
<-predUsefulness %>%
predBVsfilter(predOf=="BV") %>%
left_join(realizedcrossmetrics %>%
select(Repeat,Fold,Model,sireID,damID,Trait,FamSize,realIntensityParent) %>%
rename(realIntensity=realIntensityParent) %>%
mutate(Stage="Parent",
Model=ifelse(Model=="ClassicAD","A","DirDomBV")))
<-predUsefulness %>%
predTGVsfilter(predOf=="TGV") %>%
left_join(realizedcrossmetrics %>%
select(Repeat,Fold,Model,sireID,damID,Trait,FamSize,
contains("realIntensity"),-realIntensityParent) %>%
pivot_longer(cols = contains("realIntensity"),
names_to = "Stage",
values_to = "realIntensity",
names_prefix = "realIntensity") %>%
mutate(Model=ifelse(Model=="ClassicAD","AD","DirDomAD")))
<-bind_rows(predBVs,
predUsefulness%>%
predTGVs) # include a "stage" (=="ConstIntensity")
# where intensity for predicted UC is set to 2.67
bind_rows(predUsefulness %>%
left_join(realizedcrossmetrics %>%
distinct(Repeat,Fold,sireID,damID,Trait,FamSize)) %>%
mutate(Stage="ConstIntensity",
realIntensity=2.67))
## Compute predicted UCs
%<>%
predUsefulness ::mutate(predUC=predMean+(realIntensity*predSD))
dplyr# predUsefulness %>% count(Model,predOf,Stage)
# predUsefulness %>% filter(!is.na(predUC)) %>% count(Model,predOf,Stage)
## Format observed UCs
<-realizedcrossmetrics %>%
obsUCgcaselect(Repeat,Fold,Model,sireID,damID,Trait,realizedUCparent) %>%
rename(obsUC=realizedUCparent) %>%
mutate(predOf="BV",
Stage="Parent")
#obsUCgca %>% count(VarComp,Stage,Model,Trait)
<-realizedcrossmetrics %>%
obsUCtgvselect(Repeat,Fold,Model,sireID,damID,Trait,contains("realizedUCat")) %>%
pivot_longer(cols = contains("realizedUCat"),
names_to = "Stage",
values_to = "obsUC",
names_prefix = "realizedUCat",
values_drop_na = T) %>%
mutate(predOf="TGV")
#obsUCtgv %>% count(VarComp,Stage,Model)
<-bind_rows(obsUCgca,obsUCtgv)
obsUsefulness%<>%
obsUsefulness bind_rows(realizedcrossmetrics %>%
select(Repeat,Fold,Model,sireID,damID,Trait,meanTop1pctGEBV) %>%
rename(obsUC=meanTop1pctGEBV) %>%
mutate(predOf="BV",
Stage="ConstIntensity")) %>%
bind_rows(realizedcrossmetrics %>%
select(Repeat,Fold,Model,sireID,damID,Trait,meanTop1pctGETGV) %>%
rename(obsUC=meanTop1pctGETGV) %>%
mutate(predOf="TGV",
Stage="ConstIntensity"))
%<>%
obsUsefulness mutate(Model=ifelse(Model=="ClassicAD",
ifelse(predOf=="BV","A","AD"),
ifelse(predOf=="BV","DirDomBV","DirDomAD")))
#obsUsefulness %>% count(Trait,Stage,predOf,Model) %>% spread(Trait,n)
# predUsefulness %>% count(Model,predOf,Stage)
# obsUsefulness %>% count(Model,predOf,Stage)
# obsUsefulness %>% filter(!is.na(obsUC))
# predUsefulness %>% filter(!is.na(predUC)) %>% count(Model,predOf,Stage)
#predUsefulness %>% filter(is.na(FamSize)) %>% count(Model,predOf,VarMethod,Stage)
<-left_join(predUsefulness,obsUsefulness) %>% ungroup()
obsVSpredUC%<>% drop_na(.) %>% ungroup()
obsVSpredUC %>% str obsVSpredUC
tibble [391,848 × 15] (S3: tbl_df/tbl/data.frame)
$ Repeat : chr [1:391848] "Repeat1" "Repeat1" "Repeat1" "Repeat1" ...
$ Fold : chr [1:391848] "Fold1" "Fold1" "Fold1" "Fold1" ...
$ Model : chr [1:391848] "A" "A" "A" "A" ...
$ sireID : chr [1:391848] "IITA-TMS-IBA030075" "IITA-TMS-IBA030075" "IITA-TMS-IBA030075" "IITA-TMS-IBA030075" ...
$ damID : chr [1:391848] "IITA-TMS-IBA940006" "IITA-TMS-IBA940006" "IITA-TMS-IBA940006" "IITA-TMS-IBA940006" ...
$ Trait : chr [1:391848] "biofortSI" "biofortSI" "DM" "DM" ...
$ VarMethod : chr [1:391848] "PMV" "VPM" "PMV" "VPM" ...
$ predOf : chr [1:391848] "BV" "BV" "BV" "BV" ...
$ predMean : num [1:391848] 4.49 4.49 1.4605 1.4605 0.0746 ...
$ predSD : num [1:391848] 7.263 2.294 2.055 0.626 0.186 ...
$ FamSize : num [1:391848] 38 38 38 38 38 38 38 38 38 38 ...
$ realIntensity: num [1:391848] 2.32 2.32 2.32 2.32 2.32 ...
$ Stage : chr [1:391848] "Parent" "Parent" "Parent" "Parent" ...
$ predUC : num [1:391848] 21.327 9.807 6.225 2.913 0.505 ...
$ obsUC : num [1:391848] -0.886 -0.886 1.805 1.805 0.121 ...
%>% count(Trait) obsVSpredUC
# A tibble: 6 x 2
Trait n
<chr> <int>
1 biofortSI 65308
2 DM 65308
3 logFYLD 65308
4 MCMDS 65308
5 stdSI 65308
6 TCHART 65308
#obsVSpredUC %>% count(Model,predOf,Stage)
saveRDS(obsVSpredMeans,here::here("output","obsVSpredMeans.rds"))
saveRDS(obsVSpredVars,here::here("output","obsVSpredVars.rds"))
saveRDS(obsVSpredUC,here::here("output","obsVSpredUC.rds"))
rm(list=ls())
library(tidyverse); library(magrittr);
<-readRDS(here::here("output","obsVSpredMeans.rds"))
obsVSpredMeans<-readRDS(here::here("output","obsVSpredVars.rds"))
obsVSpredVars<-readRDS(here::here("output","obsVSpredUC.rds"))
obsVSpredUC
# Means
%<>%
obsVSpredMeans drop_na(.) %>%
nest(predVSobs=c(sireID,damID,predMean,obsMean)) %>%
mutate(Accuracy=map_dbl(predVSobs,~cor(.$predMean,.$obsMean,use = 'complete.obs'))) %>%
select(-predVSobs)
# Variances
%<>%
obsVSpredVars drop_na(.) %>%
select(-FamSize,-Nobs) %>%
nest(predVSobs=c(sireID,damID,predVar,obsVar,CorrWeight)) %>%
mutate(AccuracyWtCor=map_dbl(predVSobs,~psych::cor.wt(.[,3:4],w = .$CorrWeight) %$% r[1,2]),
AccuracyCor=map_dbl(predVSobs,~cor(.$predVar,.$obsVar,use = 'complete.obs'))) %>%
select(-predVSobs)
# Usefulness
%<>%
obsVSpredUC select(-predMean,-predSD,-realIntensity) %>%
nest(predVSobs=c(sireID,damID,predUC,obsUC,FamSize)) %>%
mutate(AccuracyWtCor=map_dbl(predVSobs,~psych::cor.wt(.[,3:4],w = .$FamSize) %$% r[1,2]),
AccuracyCor=map_dbl(predVSobs,~cor(.$predUC,.$obsUC,use = 'complete.obs'))) %>%
select(-predVSobs)
%>% count(Model,predOf,Stage) obsVSpredUC
# A tibble: 14 x 4
Model predOf Stage n
<chr> <chr> <chr> <int>
1 A BV ConstIntensity 300
2 A BV Parent 300
3 AD TGV AYT 300
4 AD TGV CET 300
5 AD TGV ConstIntensity 300
6 AD TGV PYT 300
7 AD TGV UYT 300
8 DirDomAD TGV AYT 300
9 DirDomAD TGV CET 300
10 DirDomAD TGV ConstIntensity 300
11 DirDomAD TGV PYT 300
12 DirDomAD TGV UYT 300
13 DirDomBV BV ConstIntensity 300
14 DirDomBV BV Parent 300
saveRDS(obsVSpredMeans,here::here("output","accuraciesMeans.rds"))
saveRDS(obsVSpredVars,here::here("output","accuraciesVars.rds"))
saveRDS(obsVSpredUC,here::here("output","accuraciesUC.rds"))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] predCrossVar_0.1.0 magrittr_2.0.1 forcats_0.5.1 stringr_1.4.0
[5] dplyr_1.0.5 purrr_0.3.4 readr_1.4.0 tidyr_1.1.3
[9] tibble_3.1.0 ggplot2_3.3.3 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] Rcpp_1.0.6 lattice_0.20-41 lubridate_1.7.10 here_1.0.1
[5] assertthat_0.2.1 rprojroot_2.0.2 digest_0.6.27 psych_2.0.12
[9] utf8_1.2.1 R6_2.5.0 cellranger_1.1.0 backports_1.2.1
[13] reprex_1.0.0 evaluate_0.14 httr_1.4.2 pillar_1.5.1
[17] rlang_0.4.10 readxl_1.3.1 rstudioapi_0.13 whisker_0.4
[21] jquerylib_0.1.3 rmarkdown_2.7 munsell_0.5.0 broom_0.7.5
[25] compiler_4.0.3 httpuv_1.5.5 modelr_0.1.8 xfun_0.22
[29] pkgconfig_2.0.3 mnormt_2.0.2 tmvnsim_1.0-2 htmltools_0.5.1.1
[33] tidyselect_1.1.0 fansi_0.4.2 crayon_1.4.1 dbplyr_2.1.0
[37] withr_2.4.1 later_1.1.0.1 grid_4.0.3 nlme_3.1-152
[41] jsonlite_1.7.2 gtable_0.3.0 lifecycle_1.0.0 DBI_1.1.1
[45] git2r_0.28.0 scales_1.1.1 cli_2.3.1 stringi_1.5.3
[49] fs_1.5.0 promises_1.2.0.1 xml2_1.3.2 bslib_0.2.4
[53] ellipsis_0.3.1 generics_0.1.0 vctrs_0.3.6 tools_4.0.3
[57] glue_1.4.2 hms_1.0.0 parallel_4.0.3 yaml_2.2.1
[61] colorspace_2.0-0 rvest_1.0.0 knitr_1.31 haven_2.3.1
[65] sass_0.3.1